Aller au contenu

besoin d'aide en math


Adogarou

Messages recommandés

Membre, 36ans Posté(e)
Adogarou Membre 233 messages
Baby Forumeur‚ 36ans‚
Posté(e)

Bonsoir je dois trouver la primitive de f(x) 3xe^-x

moi j'ai trouve 3x²/2-e^-x.

je ne sais pas du tout si c'est exacte car sur la feuille on me demande de montrer que la primitive de la fonction f est -3(x+1)e^-x

je ne vois pas comment on peut en arriver la aidez moi svp.

Lien à poster
Partager sur d’autres sites

Annonces
Maintenant
Membre+, I. C. Wiener, 33ans Posté(e)
konvicted Membre+ 26 925 messages
33ans‚ I. C. Wiener,
Posté(e)

Salut,

Tu dois trouver une primitive de la fonction f définie par f(x)=3xe-x, pour être rigoureux.

Il faut intégrer 3xe-x par parties.

Lien à poster
Partager sur d’autres sites

Invité Toto75019
Invités, Posté(e)
Invité Toto75019
Invité Toto75019 Invités 0 message
Posté(e)

hey! Je vais essayer d'être pédago :o°

Alors f(x) = 3 x.exp(-x)

On est dans le cas typique d'une IPP (ça doit te parler un peu, sinon, cherche dans tes cours!!)

on pose u(x) = 3x et v'(x) = exp(-x)

L'intégrale de f est F

F = [uv] - intégrale(u'.v) [cf cours]

F(x) = -3x.exp(-x) - intégrale(-3.exp(-x)) [j'utilise le fait que l'intégrale de exp(-x) c'est -exp(-x)

F(x) = -3x.exp(-x) - 3 exp(-x)

F(x) = -3(x+1).exp(-x) [factorisation]

Lien à poster
Partager sur d’autres sites

Membre, 36ans Posté(e)
Adogarou Membre 233 messages
Baby Forumeur‚ 36ans‚
Posté(e)

merci beaucoup mon pote fallait la trouver celle la quand meme^^

Lien à poster
Partager sur d’autres sites

Membre+, I. C. Wiener, 33ans Posté(e)
konvicted Membre+ 26 925 messages
33ans‚ I. C. Wiener,
Posté(e)
hey! Je vais essayer d'être pédago :o°

Alors f(x) = 3 x.exp(-x)

On est dans le cas typique d'une IPP (ça doit te parler un peu, sinon, cherche dans tes cours!!)

on pose u(x) = 3x et v'(x) = exp(-x)

L'intégrale de f est F

F = [uv] - intégrale(u'.v) [cf cours]

F(x) = -3x.exp(-x) - intégrale(-3.exp(-x)) [j'utilise le fait que l'intégrale de exp(-x) c'est -exp(-x)

F(x) = -3x.exp(-x) - 3 exp(-x)

F(x) = -3(x+1).exp(-x) [factorisation]

Je trouve que ça manque de rigueur pour être assez pédagogique. Tu confonds intégrale et fonction (une intégrale est un réel, F est une fonction), tu ne précises pas les bornes de l'intégrale de "-3.exp(-x)", expression à laquelle il manque l'élément différentiel et dont la variable muette ne devrait pas être x. Qui plus est, l'intégration par parties donne un terme constant.

En prenant F1 la primitive de f s'annulant en 0 (et I pour le signe de l'intégrale) :

F1(x) = [-3te-t]0x - I0x(-3e-t)dt

F1(x) = -3xe-x - [3e-t]0x

F1(x) = -3xe-x - 3e-x +3

F1(x) = -3(x+1)e-x + 3

f admet une infinité de primitives différant entre elles d'une constante, d'où il existe une primitive F de f définie par : F(x) = -3(x+1)e-x.

Lien à poster
Partager sur d’autres sites

Membre, 36ans Posté(e)
Adogarou Membre 233 messages
Baby Forumeur‚ 36ans‚
Posté(e)

et la primitive de e2-1 c'est e2x/2 - x?

Lien à poster
Partager sur d’autres sites

Invité Toto75019
Invités, Posté(e)
Invité Toto75019
Invité Toto75019 Invités 0 message
Posté(e)
Je trouve que ça manque de rigueur pour être assez pédagogique.

Toi tu manques pas de toupet!

la primitive de e2-1 c'est x*(e2-1) car c'est une constante pas une variable :o°

Lien à poster
Partager sur d’autres sites

Membre, 36ans Posté(e)
Adogarou Membre 233 messages
Baby Forumeur‚ 36ans‚
Posté(e)

merci pour tout

Lien à poster
Partager sur d’autres sites

Annonces
Maintenant

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

×